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A detailed model for the beams with partially debonded active constraining damping
(ACLD) treatment is presented. In this model, the transverse displacement of the
constraining layer is considered to be non-identical to that of the host structure. In the
perfect bonding region, the viscoelastic core is modelled to carry both peel and shear
stresses, while in the debonding area, it is assumed that no peel and shear stresses be
transferred between the host beam and the constraining layer. The adhesive layer between
the piezoelectric sensor and the host beam is also considered in this model. In active control,
the positive position feedback control is employed to control the "rst mode of the beam.
Based on this model, the incompatibility of the transverse displacements of the active
constraining layer and the host beam is investigated. The passive and active damping
behaviors of the ACLD patch with di!erent thicknesses, locations and lengths are examined.
Moreover, the e!ects of debonding of the damping layer on both passive and active control
are examined via a simulation example. The results show that the incompatibility of the
transverse displacements is remarkable in the regions near the ends of the ACLD patch
especially for the high order vibration modes. It is found that a thinner damping layer may
lead to larger shear strain and consequently results in a larger passive and active damping.
In addition to the thickness of the damping layer, its length and location are also key factors
to the hybrid control. The numerical results unveil that edge debonding can lead to
a reduction of both passive and active damping, and the hybrid damping may be more
sensitive to the debonding of the damping layer than the passive damping.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

In recent years, considerable attention has been concentrated on the active constrained
layer damping (ACLD) treatment in vibration control of #exible structures. The active
constrained layer damping treatment was developed by combining the active control and
the passive constraining layer damping (PCLD) treatment. A typical ACLD consists of
a viscoelastic damping layer sandwiched between the host structure and the active
constraining layer, which is made of smart materials such as piezoelectric ceramics and
magnets rather than conventional materials [1}3]. The active layer can function as
a conventional constraining layer to enhance the energy dissipation by enlarging
the shear strain in the damping layer. On the other hand, the active layer is also used as the
actuator to perform active control. Both passive and active control (i.e., hybrid control) can
be performed in the ACLD treatment, and consequently, better control results can be
achieved and the robustness and reliability of the closed control system can be greatly
improved. Therefore, great e!orts have been made on modelling, "nite element method,
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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control laws, experiment, stability and controllability of the ACLD-treated structures
[4}16].
There are two fundamental assumptions in previous studies on ACLD. One assumption

is that the transverse displacements of the constraining layer and the host structures are
compatible. Under this assumption, the transverse displacements of all points on
a cross-section are identical, which means that the viscoelastic layer does not undergo any
peel strain. However, the studies in adhesive joints [17] show that both the shear and peel
stresses in the adhesive layer may be very large in the region near an overlap end. For the
sandwiched damping layer, it is indicated that the di!erence between the transverse
displacement of the host beam and that of the constraining layer becomes signi"cant in the
regions near its ends. When the thickness of the viscoelastic core increases, the transverse
displacement incompatibility will increase, particularly for the case that the beam is only
partially treated by ACLD. Another assumption is that the ACLD treatment is perfectly
bonded on the host structures. However, during the lifetime of the active constraining layer
damping treatment, the debonding between the host and the active layer may occur due to
a sudden loading or fatigue of the damping layer. As a result, the constraining layer and the
host beam will vibrate separately, which may signi"cantly alter the passive and active
control of the structures. Therefore, investigation on the impact of debonding of the
viscoelastic core from the host beam on passive and active control is of great importance.
Up to now, few literatures were found to stress this issue.
To better understand the e!ects of this incompatibility of the transverse displacements

and the debonding of the damping layer on the hybrid control, a model for the beam with
partially debonded ACLD treatments is presented in this paper. In this model, both peel
and shear strains in the viscoelastic core are considered. The debonding of the viscoelastic
core from the host beam is modelled based on the assumption that no load transfers
between the active constraining layer and the host in the debonded region. In active control,
the positive position feedback method is employed to perform the vibration control of the
beam with ACLD treatment. Based on this model, the incompatibility between the
transverse displacement of the active constraining layer and that of the host beam is
examined. Furthermore, the e!ects of the debonding of the viscoelastic core on passive and
hybrid control are also investigated via a simulation example.

2. GOVERNING EQUATIONS

Consider a slender beam partially treated with ACLD and piezoelectric sensor patch, as
shown in Figure 1. The piezoelectric actuator layer is also used as a constraining layer. It is
assumed that the viscoelastic layer and the adhesive layer only carry constant transverse
shear and peel strains. It is also assumed that there is no stress transfer between the
piezoelectric constraining layer (actuator) and the host beam in the
through-width-debonding region. The contact and friction in the debonded region are not
considered for simplicity. In addition, only the adhesive layer used to bond the sensor patch
is considered since the sensor patch is usually very thin.
The entire beam has di!erent governing equations in its di!erent segments. For the parts

of the beam treated with ACLD and the sensor layer, its free body is shown in Figure 2 and
its equations of motion can be derived as follows:
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Figure 1. The composite beam with debonded ACLD treatment.

Figure 2. Free-body diagram of the beam with ACLD and piezoelectric sensor.
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where the subscripts 1, 2, 3, v and ad represent the piezoelectric actuator layer, the host
beam, sensor layer, the viscoelastic layer and the adhesive layer used to bond the
piezoelectric sensor, respectively, u is the longitudinal displacement in mid-plane, w is the
transverse displacement, h is the thickness, b is the width of the composite beam, � and � are
the shear and the peel stress in the viscoelastic or adhesive layer, ¹, Q andM are the axial
stress resultant, shear stress resultant and bending moment, respectively, f

�
(x, t) and f

�
(x, t)

are the axial and transverse loads per unit length, and � is the equivalent mass densities per
unit length of composite beam in which the mass of the adhesive layers and viscoelastic core
is considered. The axial stress resultants and moments in Equations (1)}(3) are given by
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where z
��
and z

	�
are the z-co-ordinates of the lower and upper surfaces of the actuator layer

measured from its own neutral plane.
The peel and shear stresses in the viscoelastic layer and adhesive layer can be expressed as
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where � is the Poisson ratio. Note that the elastic constants of the viscoelastic core and the
bonding layer along their thickness direction are modi"ed because they are constrained by
the host beam and the piezoelectric layer. Moreover, a parameter k



has been introduced to

express the bonding performance between the viscoelastic core and the host and is de"ned
by

k
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0 debonding,

1 perfect bonding.
(7)

Eliminating the force and moment results in equations (1)}(6), six di!erential equations in
terms of displacements of the composite beam can be obtained. When only electric load is
considered, by introducing Y
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equations (1)}(6) can be rearranged in the following state form:
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where Y
�
"(YT

1 , Y
T
2 , Y

T
3 )� is the 18-dimensional state vector, M

�
is the 18�18 mass density

matrix, A
�
is the 18�18 state matrix, and B

�
is the 18-dimensional vector related to the

control voltage on the actuator layer. Note that equation (8) is a set of complex partial
di!erential equations when a complex modulus of the viscoelastic layer is used.
For the host beam itself, the basic equations are easily written according to the classical

beam theory, which can also be written in the state equation form as
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where M


is the 6�6 mass density matrix and A



the 6�6 state matrix of the host beam.

2.1. CONTINUITY CONDITIONS

At the interface of the perfectly bonded and debonded regions, the continuity of the
displacements must be ensured. Moreover, the continuity (equilibrium) conditions of the
stress resultants and moments should also be imposed to guarantee the equilibrium of the
force system at the interface, as shown in Figure 3. At the interfaces between the perfectly
bonded and debonded areas in the viscoelastic damping layer, the continuity conditions of
displacements in the actuator layer, the host beam and the sensor layer can be expressed as
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where the superscripts b and d represent the bonded and debonded regions respectively.
The equilibrium of the force system at the interface requires (if there is no concentrated

external force is applied at the interface)
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The 18 continuity equations in equations (10a) and (10b) can be rewritten in the following
compact form:
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In addition, all the displacements and stress resultants of the host beam at the interface
between the part with ACLD treatment and part without ACLD treatment can be
expressed as (Figure 3)
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where the superscripts t and n represent the parts of the host beam with and without ACLD
treatment respectively. The six continuity equations in equation (11a) can be simply
expressed as

Y�2"Y�
�
. (11b)

2.2. BOUNDARY CONDITIONS

The boundary conditions of the host beam, the piezoelectric actuator and sensor patches
should be also imposed. In general, the boundary conditions at the ends of the piezoelectric
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Figure 3. Continuity conditions at the interfaces: (a) interface of perfectly bonded and debonded regions, and
(b) interface of ACLD treated and untreated regions.
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patches and the host beam can be expressed as
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where x
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are the co-ordinates of the ends of the piezoelectric patches, respectively, Ril and

Rir are the 6�6matrices dependent on the condition at the left end and the right end, andRi are
the six-dimensional vectors. In this paper, the ends of the piezoelectric are free, therefore,
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For a cantilevered host beam with a concentrated lateral force p
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2.3. SENSOR EQUATION

To perform active control of the beam, the vibration signal must be sensed by the
piezoelectric layer. The charge accumulated on the electrodes of the piezoelectric sensor
layer can be evaluated as
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where ¸
�
is the integration interval related to the sensor layer. The charge signal measured

by the sensor can be used to perform the active control of the beam.

2.4. CONTROL LAW

Due to the presence of the longitudinal vibration and the incompatibility of the
transverse displacements of the actuator and host beam, the widely used direct feedback
control method cannot guarantee the stability of the closed-loop system [18]. Therefore, the
positive position feedback method [19] is employed to control the "rst mode of the beam.
In this method, the control voltage is designed by
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where g*0 is a control gain, and �(t) is the output of a compensator given by
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where �
�
and �

�
are the natural frequency and damping ratio of the compensator

respectively. When the "rst mode is chosen as the target mode, �
�
is taken as the "rst

frequency of the composite beam. In this case, the compensator in equation (15) functions as
a low-pass "lter and a phase shifter, and its output �(t) is proportional to the "rst modal
velocity of the composite beam. As a result, an active damping can be achieved by the
control law in equation (14). Since only the charge output of the sensor is needed to design
the control voltage, the control can be easily implemented in practice.

3. SOLUTION SCHEME

When the host beam is partially treated by the ACLD, especially when the debonding is
introduced, its governing equations have di!erent forms in di!erent segments. To solve such
a set of partial di!erential equations, the Fourier transformation method is employed.
Taking Fourier transformation on both sides of equation (8), we have
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where � is the frequency parameter, the overbar stands for the Fourier transformation, for
example,
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where j"�!1. Taking Fourier transformation in equations (14) and (15) gives

<M (�)"gG(�)q
 (�), (17)

where G(�) "1/(1!��#2�
�
�j) is the transfer function of the compensator, in which

�"�/�
�
. Substituting equation (17) into equation (16), the closed-loop equations of the

segment treated with ACLD in the frequency domain can be obtained as
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Similarly, after taking Fourier transformation, the governing equations of the host beam in
equation (9) becomes
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The complex governing equations together with their related boundary conditions form
a complicated boundary value problem. The multiple shooting method [20] is generalized
to solve this problem and numerical results in the frequency domain have been obtained.
Once the boundary problem is numerically solved in the frequency domain, its solution in
the time domain can be obtained by taking inverse Fourier transformation.

4. NUMERICAL EXAMPLE

As an example, consider a cantilever beam treated with ACLD patch, which is clamped at
its left end as shown in Figure 4. The properties and dimensions are given in Table 1. The
free vibration of the beam is excited by an initial transverse impulse of 0)1N s acted at its
free end. The e!ects of the thickness, location and length of the viscoelastic damping layer
on the hybrid control will be investigated. Furthermore, the e!ects of the debonding of the
viscoelastic damping layer are also examined in this section.
First, we evaluate the di!erence between the transverse displacement of the active

constraining layer and that of the host beam. To this end, a 4 cm long ACLD patch is
bonded on the host beam and its left end is 2 cm away from the clamped end of the host
beam. For the open-loop system, the transverse displacements w

�
and w

�
at the right end of

the ACLD patch are calculated for the "rst "ve modes. The relative di!erences of their
amplitude �(w

�
!w

�
)/w

�
� and that of their phase angle �[arg(w

�
)!arg(w

�
)]/arg(w

�
)� are

presented in Figures 5(a)}5(d), respectively, for di!erent thicknesses of the damping layer.
For the closed-loop system, the "rst mode is controlled by taking g"2�10	 and �

�
"0.5 in

equations (14) and (15), and the relative amplitude and phase di!erences are also given in
Figure 4. A cantilevered beam with ACLD patch.



TABLE 1

Physical properties and dimensions of the AC¸D beam

Item Host beam Actuator Viscoelastic Sensor Adhesive
(steel) (PZT-5A) core (PZT-5A) layer

Mass density (kg/m�) 7800 7600 1600 7600 1600
>(GPA) 210 63 0)01(1#1)05i) 63 2)4
The Poisson ratio 0)4 0)34
e
��

(N/Vm) * 23)31 * 23)31 *

Thickness (m) 0)002 0.001 0.0004 0)00015
Length (m) 0)3
Width (m) 0)02 0)02 0)02 0)02 0)02
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Figure 5. Relative di!erence of the transverse displacements at the right end of the ACLD patch: (a) amplitude
di!erence � (w

�
!w

�
)/w

�
� for mode 1, (b) phase di!erence �[arg(w

�
)!arg(w

�
)]/arg(w

�
) � for mode 1, (c) amplitude

di!erence �(w
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)/w

�
� for modes 2}5 (open loop), and (d) phase di!erence �[arg(w

�
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)]/arg(w

�
) � for

modes 2}5 (open loop). �**, Open loop; �**, closed loop. �**, Mode 2; �**, mode 3; �**, mode 4; �**,
mode 5.
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Figures 5(a) and 5(b) respectively. Figure 5 shows that both the amplitudes and phase angles
of the transverse displacements in the active constraining layer and host beam are di!erent.
Moreover, these di!erences increase remarkably as the thickness of the damping layer
increases. However, this trend is hardly a!ected by the closed-loop control although the
active control may slightly decrease the amplitude and phase di!erences betweenw

�
and w

�
.

It can also be found that the amplitude and phase di!erences between w
�
and w

�
become

more signi"cant for higher modes of the beam. For example, when the damping layer is 1)1
times as thick as the host beam, these amplitude and phase di!erences at the "fth mode are
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nearly 9 and 3%, respectively, while those at the "rst mode are only 0)8 and 0)2%. It should
be pointed that the phase incompatibility of the transverse displacement in actuator and
sensor bonded on the host beam may result in instability in the closed-loop control. The
di!erence between the transverse displacement of the constraining layer and the host beam
along the ACLD span can be determined from the peel strain distribution in the damping
layer shown in Figure 6. Figure 6 depicts the distribution of the peel and shear strains in the
viscoelastic damping layer with di!erent thicknesses for the "rst three modes of the
open-loop system. It shows that both peel and shear strains in the regions near the ends of
the damping layer are much larger than those in the middle region. Moreover, the strain
distribution for all modes depends on the thickness of the damping layer. For all the three
modes, as indicated in Figures 6(b), 6(d) and 6(f ), the shear strain decreases remarkably as
the thickness of damping layer increases. However, as shown in Figures 6(a), 6(c) and 6(e),
the relationship between the peel strain and the thickness of damping layer is not so simple
particularly for the higher modes. This is probably because the incompatibility of transverse
vibration between the host and the actuator layer a!ects the peel strain much more than the
shear strain. Figure 6 also shows that the incompatibility of the transverse displacement is
more severe in the regions near the ends of the ACLD patch for a damping layer with
a given thickness.
Next, we mainly examine the passive and hybrid (active plus passive) damping e!ects of

the ACLD patch on the "rst mode of the composite beam. When the ACLD patch
mentioned above was used to perform the passive and active control, the damping ratios for
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Figure 6. The modal strain distribution in the damping layer: (a) peel strain for mode 1, (b) shear strain for mode
1, (c) peel strain for mode 2, (d) shear strain for mode 2, (e) peel strain for mode 3, and (f ) shear strain for mode 3.
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Figure 6. Continued.
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Figure 7. E!ect of the thickness of the damping layer on the damping ratio for the "rst mode: �**, open loop;
�**, closed loop.
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the "rst mode of the beam are as displayed in Figure 7. As indicated in Figure 7, both
passive and hybrid damping e!ects on the "rst mode of the beam are greatly weakened with
an increasing thickness of the damping layer. The reduction of the passive damping results
from the decrease of the shear strain due to the thickening of the damping layer, as shown in
Figure 6. The incompatibility between the transverse displacements on the actuator and the
host beam may be one of the factors a!ecting the e$ciency of the hybrid control. Figure 8
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presents the e!ect of the location of a 4 cm ACLD patch (the thickness of the damping layer
is 2 mm) on passive and hybrid control of the "rst mode. In Figure 8, x

�
represents the

x-co-ordinate of the left end of the ACLD patch, and ¸ is the length of the host beam.
Figure 8 shows that the best location of the ACLD patch for both passive and hybrid
control of the "rst mode is near the clamped end of beam. The length of the ACLD is also
a key factor to a!ect the passive and active control, as shown in Figure 9. In this case, the
distance from the clamped end of the beam to the left end of the ACLD patch remains as
1 cm. The lengths of the ACLD patch are normalized by the whole length of the beam.
Figure 9 indicates that both the passive and hybrid damping ratios for the "rst mode are
enlarged when the ACLD patch increases. The hybrid damping is much more sensitive to
the length change of ACLD patch than the passive damping.
Finally, we investigate how the edge and middle debonding of the damping layer a!ects

the passive and hybrid control of the composite beam. An 8 cm ACLD patch with 2 mm
thick damping layer is bonded on the beam such that its left end is 1 cm away from the
clamped end of the beam. The edge debonding regions with several di!erent lengths are
located at the left end of the ACLD patch. When a 50% edge debonding occurs, the
frequency spectrum of the transverse displacement at the free end of the open-loop beam is
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given in Figure 10. For the purpose of comparison, the frequency spectrum for the beam
with perfect bonded ACLD is also shown in Figure 10. It can be seen from Figure 10 that
the edge debonding of the ACLD results in a signi"cant change in the frequency spectrum.
The peak values in the spectrum increase due to the decreased damping caused by the edge
debonding. Moreover, the modal frequencies are also changed to some extent due to the
debonding, which leads to the change of the locations of the peaks in the frequency
spectrum. To further examine the e!ects of edge debonding on frequencies and damping
ratios of the beam, take the edge debonding length as 0, 12)5, 25, 37)5 and 50% of the total
length of the damping layer, respectively, the relative change of the "rst three modal
frequencies are depicted in Figure 11. The edge debonding of the ACLD from the host beam
leads to reduction of the "rst two modal frequencies, and the "rst two frequencies decrease
as the edge debonding length becomes larger. However, when the edge debonding length
reaches half of the entire length of the damping layer, the third frequency is higher than that
with perfectly bonded ACLD. It is believed that, because the "rst frequency of the debonded
constraining layer, which vibrates in a way similar to a cantilever beam, is about 291 Hz and
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is close to the third frequency of the beam (300 Hz), the two vibration modes interact with
each other. The impact of the edge debonding of ACLD on passive and hybrid vibration
control of the beam is presented in Figure 12(a). Both passive and hybrid damping e!ects
are signi"cantly reduced due to the edge debonding of the viscoelastic damping layer. The
longer the edge debonding region is, the more signi"cant the reduction of the damping ratio
is. For example, a 12.5% edge debonding of the ACLD leads to a 31% reduction of the
hybrid damping ratio for the "rst mode. However, when the debonding occurs in the middle
of the damping layer, its e!ect on both passive and hybrid damping is very weak, as shown
in Figures 12(b). Even a 50% middle debonding of the damping layer can only result in
a 9% reduction of the hybrid damping ratio for mode 1. It can also be seen from both
Figure 12(a) and 12(b) that the hybrid control is much more sensitive to the debonding of
the damping layer than the passive control itself.

5. CONCLUSIONS

A detailed model for the beams with partially debonded ACLD treatment is presented, in
which both #exural and longitudinal displacements are also taken into account. The hybrid
control is performed by using the positive position feedback control to control the "rst
mode of the beam. The simulation results show that the incompatibility of the transverse
displacements is remarkable in the regions near the ends of the ACLD patch especially for
the thick viscoelastic damping layer, and this incompatibility gets more signi"cant for the
higher modes. The results also show that a thinner damping layer may lead to larger passive
and hybrid damping because the shear strain decreases remarkably as the thickness of the
damping layer increases. Moreover, the length and location of the ACLD patch are key
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factors to the hybrid control. As to the e!ects of the debonding, the edge debonding can lead
to reduction of both passive and active damping. It is also found that the hybrid damping is
more sensitive to the debonding of the damping layer than the passive damping only.
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